
The phenotypic spectrum of SCN8A
encephalopathy

ABSTRACT

Objective: SCN8A encodes the sodium channel voltage-gated a8-subunit (Nav1.6). SCN8A
mutations have recently been associated with epilepsy and neurodevelopmental disorders. We
aimed to delineate the phenotype associated with SCN8A mutations.

Methods: We used high-throughput sequence analysis of the SCN8A gene in 683 patients with a
range of epileptic encephalopathies. In addition, we ascertained cases with SCN8A mutations
from other centers. A detailed clinical history was obtained together with a review of EEG and
imaging data.

Results: Seventeen patients with de novo heterozygous mutations of SCN8A were studied. Sei-
zure onset occurred at a mean age of 5 months (range: 1 day to 18 months); in general, seizures
were not triggered by fever. Fifteen of 17 patients had multiple seizure types including focal,
tonic, clonic, myoclonic and absence seizures, and epileptic spasms; seizures were refractory to
antiepileptic therapy. Development was normal in 12 patients and slowed after seizure onset,
often with regression; 5 patients had delayed development from birth. All patients developed
intellectual disability, ranging frommild to severe. Motor manifestations were prominent including
hypotonia, dystonia, hyperreflexia, and ataxia. EEG findings comprised moderate to severe back-
ground slowing with focal or multifocal epileptiform discharges.

Conclusion: SCN8A encephalopathy presents in infancy with multiple seizure types including
focal seizures and spasms in some cases. Outcome is often poor and includes hypotonia and
movement disorders. The majority of mutations arise de novo, although we observed a single case
of somatic mosaicism in an unaffected parent. Neurology® 2015;84:480–489

GLOSSARY
EE5 epileptic encephalopathy; SCN8A5 sodium channel, voltage-gated, type VIII, a subunit; SUDEP5 sudden unexplained
death in epilepsy.

The epileptic encephalopathies (EEs) are a group of severe epilepsies that predominantly begin
in infancy and childhood. They are characterized by refractory seizures with the child typically
experiencing multiple seizure types in the setting of developmental delay or regression; frequent
epileptiform activity is seen on EEG studies.1 The genetic etiology of these disorders has become
increasingly recognized with de novo mutations in many patients. The prototypic example is
Dravet syndrome in which.80% of patients have mutations of the sodium channel a1-subunit
gene, SCN1A. Gene discovery in Dravet syndrome has fueled clinical and basic research in-
forming diagnosis and therapeutic approaches.

Recently, the application of next-generation sequencing approaches has led to the identifica-
tion of multiple new genes for EEs although each is responsible for a small proportion of pa-
tients. Once a gene is identified, studies of patients who have a mutation of the same gene
facilitate clinical recognition of the phenotypic spectrum of a specific genetic encephalopathy.

Sodium channel genes have emerged as very important in causation of EEs with SCN1A
being the most well studied. Mutations of the a-subunit genes SCN1A and SCN2A are
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associated with a wide spectrum of epilepsy
syndromes ranging from EEs to mild disorders
such as febrile seizures.2–6 Recently, de novo
mutations in SCN8A, encoding one of the
main voltage-gated sodium channel subunits
(Nav1.6) in the brain,7 have been described in
patients with severe epilepsy,8–13 although a
clear clinical presentation has yet to be
described or investigated. Herein, we report
the phenotype of 17 patients with EE and
disease-causing mutations in SCN8A.

METHODS Patients. SCN8A patients were identified from a

large cohort of 683 patients with EEs from Denmark, Australia,

North and South America, and Europe. A detailed epilepsy,

developmental, and general medical history was obtained for each

patient together with examination findings. EEG and imaging

data were reviewed. Seizures were diagnosed according to the

International League Against Epilepsy Organization, and epilepsy

syndromes were established where possible.1

Standard protocol approvals, registrations, and patient
consents. The study was approved by the ethics committee of

Western Zealand and Austin Health and the institutional review

board of the University of Washington. The parent or legal

guardian of each patient gave informed consent.

Mutation analysis. Genomic DNA was extracted using stan-

dard methods. Mutations in 7 cases were identified using targeted

capture of all exons and at least 5 base pairs of flanking intronic

sequence of SCN8A with molecular inversion probes (RefSeq,

hg19 build, transcript ID ENST00000354534).14 Data analysis,

variant calling and filtering, as well as depth of coverage statistics

were generated as previously described.10 Variants were assumed

to be pathogenic if they were nonsynonymous, splice-site altering,

or frameshift changes, not present in 6,500 control samples

(Exome Variant Server—see URLs/resources), and had arisen

de novo in the patient (or was inherited from a parent with

somatic mosaicism). The remaining 10 SCN8A mutations were

identified by clinical or research testing at 6 centers. Traditional

Sanger sequencing was used to confirm all mutations and to

perform segregation analysis in parental DNA. Where possible,

parental status was confirmed by microsatellite analysis.

RESULTS Mutation analysis. We identified 16 pa-
tients with de novo pathogenic heterozygous muta-
tions of SCN8A and one pathogenic SCN8A
mutation inherited from an unaffected somatic mosaic
parent as described previously.10 Seven cases were iden-
tified using high-throughput capture and resequencing
in a cohort of 683 probands with a range of EEs,
accounting for approximately 1% (7/683) of cases.
We obtained additional phenotypic information for
one case who was previously published10 and for 10
additional patients who were referred with a de novo
SCN8A mutation (table 1). None of these mutations
have been identified previously in 6,500 control
individuals.

The 17 pathogenic mutations were distributed
throughout the entire SCN8A gene (figure 1). Sixteen

of 17 were missense and altered evolutionarily con-
served amino acids. Notably, 4 patients (D, G, K, Q)
had mutations altering the same amino acid. We
identified a single individual with a 3 base pair dele-
tion that abolished the donor splice site (predicted by
MutationTaster15—see URLs/resources). Although
we were unable to test the effects of this deletion on
splicing, in silico analysis predicts that the disruption
of this donor splice site will result in skipping of exon
24 during pre-mRNA splicing. Skipping of this 138
base pair exon would lead to an in-frame deletion of
46 amino acids from the third transmembrane
domain and the intracellular loop to transmembrane
domain 4.

Clinical features of SCN8A encephalopathy. The 17 pa-
tients ranged in age from 8 months to 44 years (mean 8
years) at diagnosis; 12 were female. Seizure onset
occurred at a mean of 5 months (median 4 months,
range 1 day to 18 months) (table 2). Seizure semiology
at onset was variable and included focal clonic seizures
evolving to a bilateral convulsive seizure (7), afebrile
tonic-clonic seizures (3), tonic seizures (3), epileptic
spasms (2), febrile seizures (1), and myoclonic seizures
(1). Fifteen of 17 patients developed additional seizure
types, including generalized tonic-clonic seizures (11),
epileptic spasms (5), atypical absence seizures (5),
myoclonic seizures (4), and atonic seizures (1). Eight
of 17 patients had episodes of convulsive (7) or
nonconvulsive (1) status epilepticus.

All patients had refractory epilepsy, although 4 pa-
tients had extended seizure-free periods. Patient E was
seizure-free for 6 months on valproic acid and oxcar-
bazepine; patient J for 17 years on carbamazepine;
patient K for 8 months on valproic acid1 phenytoin;
patient P is currently responding to oxcarbazepine
(6 weeks seizure-free); and patient O remains
seizure-free after 3 years on no treatment.

The developmental pattern varied from normal
development with slowing or regression after seizure
onset in 12 patients, to one of abnormal development
from birth in 5 with regression in one. All patients
older than 18 months (n 5 15) had intellectual dis-
ability that ranged from mild (1) to moderate (4) to
severe (10). Of the 15 patients older than 18 months,
7 could sit and walk unassisted.

Neurologic features were prominent in the major-
ity of cases and included hypotonia (8), dystonia (4),
hyperreflexia (2), choreoathetosis (2), and ataxia (1).
Psychiatric features were observed in 4 of 17 patients:
3 had autistic features and one had attention deficit
hyperactivity disorder. Seven of 17 patients gradually
lost eye contact during the course of the disease; only
one of these had autistic features.

Early death occurred in childhood in 2 patients:
patient A died at 3 years during a seizure and
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patient G had sudden unexplained death in epilepsy
(SUDEP) at 5 years.

MRI studies. Brain MRI at onset was normal (9),
abnormal (4), or not available (4). The abnormal
findings included cerebral atrophy (3) and hypoplasia
of the corpus callosum (1). Patients B and C had

normal MRI at seizure onset with follow-up studies
at ages 5 years and 15 months, respectively,
showing diffuse atrophy.

EEG findings. EEG at onset was available for 14 of 17
patients and showed focal or multifocal epileptiform
activity in 6 patients and was normal in 8 (table 3).

Table 1 Pathogenic SCN8A mutations in 17 patients

Proband Inheritance DNA change Amino acid change Function
PolyPhen
score

Patient A De novo g.52200120G.A Arg1617Gln Missense 1.00

Patient B De novo g.52159789T.A Val960Asp Missense 1.00

Patient C De novo g.52200671C.G Gln1801Glu Missense 0.99

Patient D De novo g.52200885G.A Arg1872Glna Missense 1.00

Patient E De novo g.52159578G.A Ala890Thr Missense 1.00

Patient F De novo g.52184197A.G Ile1479Val Missense 0.97

Patient G De novo g.52200884C.T Arg1872Trpa Missense 1.00

Patient H Inherited, somatic 13%
mosaic

g.52180374C.G Leu1331Valb Missense 0.99

Patient I De novo g.52093426T.C Phe260Ser Missense 0.92

Patient J De novo g.52200083A.G Ile1605Arg Missense 0.83

Patient K De novo g.52200885G.A Arg1872Glna Missense 1.00

Patient L De novo g.52099294G.C Val410Leu Missense 0.03

Patient M De novo g.5218320211_14delc Pro1428_Lys1473del
(predicted)

Splice-site NA

Patient N De novo g.52200218G.A Ala1650Thr Missense 1.00

Patient O De novo g.52082570A.G Asn215Arg Missense 0.98

Patient P De novo g.52188404C.G Val1592Leu Missense 0.77

Patient Q De novo g.52200884C.T Arg1872Trpa Missense 1.00

Abbreviation: NA 5 not available.
Variants are annotated according to the transcript ENST00000354534.
aMutations affecting the same amino acid.
bReported in reference 9.
c Splice-site mutation.

Figure 1 De novo SCN8Amutations in patients with epileptic encephalopathy reported in this study (red dots)
and in the literature (green triangles)8,9,12,13,16,23

The letters associated with each dot correspond to the patient identification in the tables. Mutations are observed in
the cytoplasmic loops, extracellular loops, and transmembrane helices. There are 3 amino acid residues that are
found to be recurrently mutated: 5 occurrences at Arg1872, 3 of Arg1617Gln, and 2 of Ala1650Thr have been
reported.
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Table 2 Clinical features of patients with SCN8A mutations

Patient
identification
(sex)

Current
age

Seizure
onset

Seizure type
at onset

Other seizure
types

Seizure
outcome

Development
before
seizure onset

Development
after seizure
onset Intellect MRI

Diagnosis at
clinical
assessment Additional features

Patient A (F) Deceased
(3 y)

5.5 mo GTC during
afebrile
gastroenteritis

C, T, AA, M Continuing sz
until death

Normal Delayed with
regression

Severe ID At onset: normal Unclassified EE No speech, loss of eye contact from 30 mo,
hypotonia, dystonia, wheelchair-bound

Patient B (F) 6 y 2.5 mo FC C, GTC, A, E, AA T, FC evolving
to BC

Normal Delayed with
regression

Severe ID At onset: normal; 5 y:
diffuse atrophy

Unclassified EE No speech, loss of eye contact from 24 mo,
hypotonia, dystonic cerebral palsy,
stereotypies, wheelchair-bound

Patient C (M) 4 y 3 mo F, GTC, E with
eye deviation

F, T, E, GTC
preceded by apnea
and deep cyanosis,
FC evolving to BC,
G, SE

F, GTC, SE, FO Normal Delayed with
regression

Severe ID At onset: normal; 15
mo: cerebral atrophy

Dravet-like No speech, loss of eye contact, generalized
hypotonia, fatigable muscle weakness and
ptosis, dyskinesia, stereotypic hand
movements, not sitting, autistic features

Patient D (F) 16 y 7 mo FC evolving to
BC

C, GTC, A, AA, rare
myoclonic jerks, F,
SE

FC evolving to
BC

Normal Delayed Moderate
ID

NA Dravet-like Repetitive language, macrocephaly,
generalized hyperreflexia, clumsiness,
autistic features

Patient E (F) 4 y 9 mo Nocturnal BC
with cyanosis

BC with cyanosis Sz-free for 6
mo, except for
a single short
sz

Delayed Delayed Moderate
ID

NA Unclassified EE Speaks single words, moderate hypotonia,
ADHD

Patient F (F) 8 mo 1 d Nocturnal M Nocturnal T, SE,
perioral cyanosis

T NA Delayed Moderate
ID

2.5 mo: circumscript
hypoplasia of corpus
callosum

Unclassified EE Hypotonic, movement disorder

Patient G (F) Deceased
(5 y)

4 mo T with SE and
cyanosis

GTC with SE, T with
cyanosis, AB with
myoclonic jerks, E

Until death
continuing sz

Normal Delayed Severe ID At onset and follow-up:
normal

EIEE No speech, loss of eye contact, hypertonia,
generalized hyperreflexia, wheelchair-
bound

Patient H (M) 12 y 18 mo GTC with SE FD, M, SE, T GTC, FD Delayed Delayed with
regression

Moderate
ID

Nonspecific foci of high
signal in white matter
of frontal lobes

Unclassified EE Ataxia, autistic features

Patient I (F) 10 y 4 mo Clusters of GTC T, GTC, FD, focal M GTC, A, FD Normal Delayed with
regression

Moderate
ID

At onset and follow-up:
normal

Dravet-like Speaks short sentences, ataxic gait

Patient J (M) 44 y 4 mo T GTC Sz-free for
17 y

Normal Delayed Mild ID Bilateral reduction in
cerebellar volume

“Vaccine
encephalopathy”

None

Patient K (F) 7 y 4 mo FC evolving to
BC

GTC, SE, T Ongoing Normal Delayed with
regression

Moderate
to severe
ID

Normal Unclassified EE Reflex component to seizures with fall or
pain, autistic features

Patient L (M) 19 mo 4 mo E None E Delayed Delayed Severe ID 5 mo: myelination
delayed, residual
superficial hemosiderin
with frontal
predominance

Unclassified EE No speech, loss of eye contact, severe
hypotonia, secondary microcephaly

Patient M (F) 4 y 10 mo Clonic
alternating

BC with tonic
posture, prolonged
BC with vomiting

Ongoing Delayed Delayed Severe ID 17 mo: normal EIEE No speech, loss of eye contact, severe
extrapyramidal movement disorder, severe
dystrophy, gastroparesis, microcephaly

Patient N (F) NA 3 mo FC evolving to
BC

SE, asymmetric T,
AA

Asymmetric F,
asymmetric C

Delayed Delayed Severe ID NA EOEE Quadriparesis with dystonic posturing,
dystonic-dyskinetic movement disorder,
hypotonia, wheelchair-bound
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Fifteen patients developed an abnormal EEG show-
ing moderate to severe background slowing (12) and
focal or multifocal sharp waves or spikes (12), most
often observed in the temporal region (8). Patients A,
B, C, D, and G showed almost continuous delta slow-
ing in the temporo-parietal-occipital regions, with
superimposed beta frequencies in some and bilateral
asynchronous spikes or sharp waves (figure 2).

DISCUSSION Our results confirm the importance of
SCN8A as a cause of EEs with 7 of 683 (1%) previ-
ously unexplained cases having a causative mutation.
Mutations frequently arise de novo, but we show that
inherited mutations from a mosaic parent can also
occur. We describe the phenotype of 17 cases with
SCN8A encephalopathy bringing the total number of
patients with EE due to SCN8Amutations to 30.8–13,16

Combining our series with previously published
cases, seizures began in infancy at a mean age of 5
months, typically with focal seizures. Tonic-clonic
seizures were seen in the majority of cases (18/30).
Epileptic spasms were reported in one-third of cases
either at presentation or as the disease evolved.8,11

Myoclonic and absence seizures occurred in approx-
imately 30% of patients. Seizures were usually refrac-
tory. Notably sodium channel blockers appeared
effective and allowed 4 of our patients a period of
seizure freedom.

Development was normal before seizure onset in
13 of 23 cases (57%) with subsequent developmental
slowing often with regression. In the remaining pa-
tients, development was not normal and regression
sometimes occurred with seizure onset. In an addi-
tional 8 cases, development before seizures was not
fully documented.13 Half of the patients had severe
intellectual disability, and autistic features were noted
in some cases (table 2). Hypotonia was often observed
as well as movement disorders in some individuals
manifesting as dystonia and choreoathetosis. Three
patients exhibited atrophy on brain MRI, a finding
that has been described in at least 2 previously re-
ported patients.13 The atrophy is more likely to be
due to the underlying sodium channelopathy, but we
cannot exclude that it is secondary to treatment of the
seizure disorder.

A key differential diagnosis of SCN8A encephalop-
athy is Dravet syndrome, which is due to SCN1A
mutations in .80% of cases.17 Indeed, several of
our patients were referred for genetic testing with a
diagnosis of Dravet syndrome. While SCN8A
encephalopathy shares some features with Dravet
syndrome, there are notable differences. The mean
age at onset of 5 months is similar to Dravet syn-
drome; however, the range of 0 days to 18 months
in SCN8A encephalopathy is broader than that seen
in Dravet syndrome. In contrast to the pronounced
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susceptibility to seizures with fever in Dravet syn-
drome, only 2 of 17 patients with SCN8A encepha-
lopathy had seizures with fever. Seizure types also
differ. Seven of 17 patients with SCN8A encephalop-
athy had spasms, which are not a feature of Dravet
syndrome. Myoclonic seizures, which are common in
Dravet syndrome, only occurred in 5 patients. Hypo-
tonia and movement disorders are not features of Dra-
vet syndrome. The EEG findings also differ in that
generalized spike wave was not seen in SCN8A enceph-
alopathy and is a hallmark of Dravet syndrome after
1 to 2 years of age. We also observed that the sodium
channel blockers carbamazepine, oxcarbazepine, and

phenytoin rendered a few of our SCN8A cases
seizure-free but are reported to exacerbate seizures in
Dravet syndrome.18,19 Two of the patients in our study
died aged 3 and 5 years, one of SUDEP, which has
been reported in one other patient with an SCN8A
mutation.8 Larger series of patients with mutations in
SCN8A will be required to determine the overall risk of
SUDEP in this patient population.

The mutations reported in this study were distrib-
uted throughout the protein (figure 1). None were
located in the known protein–protein interaction re-
gions of SCN8A.20 In 4 patients, we observed muta-
tions altering the same amino acid (1872, transcript

Table 3 EEG features of patients with SCN8A mutations

Patient
identification
(sex) EEG at onset EEG at follow-up Last EEG

Patient A (F) Normal 2 y: bilateral temporo-occipito-parietal delta activity
with superimposed beta activity; single left
temporal S/SSW

2 y: bilateral temporo-occipito-parietal delta
activity with superimposed beta activity; single
left temporal S/SSW

Patient B (F) Normal 21 mo: bilateral temporo-occipito-parietal delta
activity with superimposed beta activity and bilateral
asynchronous temporo-occipito-parietal S/SSW

2 y: bilateral temporo-occipito-parietal delta
activity with superimposed beta activity and
bilateral asynchronous temporo-occipito-parietal
S/SSW

Patient C (M) Normal Frequent focal/multifocal activity, diffuse slow
high-voltage activity

2 y: focal discharges predominantly in left
hemisphere, slow diffuse irritative dysrhythmic
activity

Patient D (F) Normal Multifocal epileptic activity with persistent focus in
the left temporal region

13 y: multifocal epileptic activity

Patient E (F) Discrete left temporal spikes Normal Normal

Patient F (F) Normal 5 mo interictal EEG: temporo-occipital delta activity;
5 mo ictal EEG: generalized rhythmic epileptic
activity with 4–5/s irregular SW followed by
generalized slowing

8 mo: temporo-occipital slowing with rhythmic
theta-delta activity, sporadic SW in the left
temporal region

Patient G (F) NA 17 mo: moderate background slowing 4 y: bilateral asynchronous sharp waves in
temporo-centro-parietal regions

Patient H (M) NA 9 y interictal EEG: generalized background slowing,
multifocal activity; ictal EEG: paroxysmal fast
activity during tonic seizures

10 y: frequent SW activity from left frontal
region; bilateral frontal activity seen with tonic
posturing

Patient I (F) Normal 6 mo: right temporal SW complexes; 9 mo: 2
subclinical EEG seizures arising from central midline

7.5 y: normal

Patient J (M) Minor slowing over the right
midparietal and midtemporal regions

13 mo: normal 13 y: normal

Patient K (F) NA 10 mo: slow background activity with generalized or
multifocal epileptic activity, hypsarrhythmia,
multifocal discharges

3 y: continuous slowing, bilateral SW activity

Patient L (M) Hypsarrhythmia in the posterior
regions and during sleep

Hypsarrhythmia in the posterior regions and during
sleep

19 mo: hypsarrhythmia in the posterior regions
and during sleep

Patient M (F) Bifrontal delta activity with
intermittent spikes

18 mo: bifrontal delta activity with intermittent spikes 3 y, 8 mo: frontotemporal or posterior delta
activity

Patient N (F) Multifocal epileptiform activity Slow waves in the central regions, frontal
asynchronous epileptiform activity

Slow background, multifocal spikes

Patient O (F) Multifocal epileptiform activity with
secondary generalization; epileptic
spasm captured with EEG decrement
after event

20 mo: bilateral temporo-occipito-parietal delta
activity with superimposed beta activity

20 mo: bilateral temporo-occipito-parietal delta
activity with superimposed beta activity

Patient P (F) Frequent central spike and wave
discharges from vertex and right
central region; normal background

Repetitive spike discharges over vertex and left and
right central head regions, slow posterior rhythm

Repetitive spike discharges over vertex and left
and right central head regions, slow posterior
rhythm

Patient Q (F) Normal 3 mo: bilateral occipital discharges, tonic seizures
captured with left occipital onset followed by
bilateral spread

6 y: diffuse slowing

Abbreviations: NA 5 not available; S/SSW 5 spike/spike and slow wave; SW 5 spike wave.
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ID ENST00000354534); alteration of this residue
was previously reported in a patient with EE.13 There
are 2 additional recurrent mutations: the
Arg1617Gln reported here has been seen in 2 addi-
tional patients with severe intellectual disability and
epilepsy (3 mutations total) and the Ala1650Thr in
one additional patient (2 mutations total).9,13 These
findings reveal amino acid position 1872 as a muta-
tion hotspot and positions 1617 and 1650 as likely
emerging hotspots. It will be important for future
studies to establish the effect of these pathogenic
mutations on SCN8A function. It is likely that path-
ogenic SCN8A missense mutations act in a gain-of-
function manner, similar to the de novo Asn1768Asp
and Thr176Ile mutations identified in patients with
EE.8,16 In vitro studies of the Asn1768Asp demon-
strated that the mutant channel had incomplete chan-
nel activation, increase in persistent sodium current,
and a depolarizing shift in voltage dependence of
steady-state fast inactivation.8 Similar studies for the
Thr767Ile mutation demonstrated analogous bio-
physical properties of the mutant channel.16 Collec-
tively, these results suggest that the mutant channels
lead to increased excitability of the neuron, and that
this feature is likely to underlie the epilepsy in pa-
tients with de novo missense mutations.

We identified a single patient with a de novo
splice-site mutation that is predicted to give rise to
an in-frame deletion of 46 amino acids because of
exon skipping. This deletion would remove a portion
of the third transmembrane domain and the intracel-
lular loop that serves as the inactivation gate.20 It will
be important to establish whether this mutation also
acts in a gain-of-function manner. Loss-of-function
mutations seem to be associated with intellectual

disability and ataxia in humans,20 and homozygous
null mice present with ataxia and impaired learn-
ing.21,22 Future sequence-based studies in patients
with these disorders, as well as functional validation
of the effects of different types of SCN8A mutations,
are needed to determine whether distinct mutations
in SCN8A cause diverse neurologic manifestations.

It is also worth noting that despite the identifica-
tion of 30 patients with de novo SCN8A mutations
throughout the protein, there does not appear to be
any genotype–phenotype correlation regarding the
position of the mutation and the seizure onset, types,
or severity of clinical presentation. This is exemplified
by the recurrent missense mutation at protein posi-
tion 1872, which has now been described in 5 pa-
tients, 4 here and one previously.13 Even though these
individuals have the same primary genetic lesion, clin-
ical presentation was variable. Onset of seizures
ranged from 1 to 7 months; 3 patients first presented
with tonic or tonic-clonic seizures, and 2 with focal
clonic seizures that evolved to bilateral convulsive
seizures. Multiple seizure types were subsequently
present in all cases, and intellectual disability ranged
from moderate to severe. The only feature common
to all patients was normal development before seizure
onset. A greater number of patients with SCN8A
mutations will need to be identified in the future to
determine whether there are any phenotypic or gen-
otypic subgroups that may be delineated.

SCN8A mutations are found in 1% of patients
with previously unexplained infantile-onset EE. We
present the largest series of patients with pathogenic
SCN8A mutations to date. We observed a wide spec-
trum of phenotypes of the EEs in all patients; seizure
onset, type, and neurodevelopment and progression

Figure 2 Interictal EEG features of patients B, D, and G

EEG discharges in the temporo-parieto-occipital regions consist of bilateral independent spikes and sharp waves, and inter-
mittent biposterior quadrant delta activity. EEG parameters are as follows: speed: 20 mm/s; sensitivity: 300 mV/mm;
bandpass filter: 1,600–70 Hz; notch off. Pat 5 patient.
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were all variable within our cohort. An emerging phe-
notype seems to consist of seizure onset by 18 months
with multiple seizure types and developmental slow-
ing. Whether this lack of a distinct clinical presenta-
tion is attributable to the relatively small number of
patients who have been identified or reflects a true
spectrum remains to be seen. Of note, despite the lack
of clear phenotype, the observation that sodium chan-
nel blockers may be effective in these cases under-
scores the importance of a molecular diagnosis. It
also argues for unbiased genetic testing as part of a
gene panel or exome in children with EEs. Our study
highlights the power of such an approach, whereby a
genotype first paradigm can advance our understand-
ing of the clinical presentation of patients, which may
in turn guide therapeutic choices in the future, enable
recognition of associated comorbidities, and inform
prognostic counseling.

URLS/RESOURCES
PolyPhen-2: http://genetics.bwh.harvard.edu/pph2/; SIFT: http://sift.

jcvi.org/; Exome Variant Server: http://evs.gs.washington.edu/EVS/;

MutationTaster: http://www.mutationtaster.org/; GATK: http://www.

broadinstitute.org/gatk/.
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